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Group 9: Optimal Design of a Rollercoaster 
 

Owen, Sophie Thompson, Oliver Last, Matthew Tiersen, Federico 

Sub-system 1: Cart Sub-system 2: Drop Sub-system 3: Loop Sub-system 4: Zero-G Roll 

ABSTRACT 

This paper details an optimisation study on the design of a non-

inverted, traditional rollercoaster. The goal of the study is to maximise 

passenger enjoyment by minimising the objective functions of 4 

subsystems. Passenger enjoyment has been defined through research as 

high speed, high G-forces and unnatural experiences such as prolonged 

weightlessness. These can be described by various physical parameters 

of the track and rollercoaster. 

The overall system level optimisation used a combination of 

nonlinear solvers from each subsystem, to return values comparable to 

industry leading rollercoasters.  

The mass of the cart was found to be 4100 kg and the coefficient of 

rolling resistance 0.267, amounting to a rolling resistance of 920 N. 

These values were fed into subsystem 2, where the maximum velocity, 

drop height and G force over the drop were found to be 33 ms-1 , 76 m 

and 6 G respectively.  

The third subsystem concerns a loop in the track of the rollercoaster. 

Its curvature is optimised to increase enjoyment by maximising the 

amount of G force the passengers are exposed to, again whist keeping 

in safe industry boundaries. This was achieved, providing a loop with 

an average G-Force level of 3. 

The airtime experienced with the optimal launch track (length 84.4 

m, height 22.5 m, launch angle 31.3 o) is 5.3 s, as found by subsystem 

4. Methodologies from subsystems 2,3 and 4 may be combined in 

further studies to design industry-leading track shapes from desired G-

force profiles while avoiding sudden G-force changes. 

1. Introduction 

This project maximises the enjoyment of a rollercoaster, by 

optimising various parameters which have been directly linked to 

enjoyment. These include extreme G-Force [1], accelerations and 

velocities, [2] as well as a variety of track formations. 

The problem is tightly constrained by safety restrictions, particularly 

staying within safe G-Force limits. This means a balance is needed 

between maximising speed, acceleration and safety [3]. 

The physics governing a rollercoaster and the effects of g-force on 

the human body are well documented [4], as are data about current 

rollercoasters, making pre-made datasets easy to find. A ride on a 

rollercoaster containing at least one drop, one loop and one zero g-roll 

will guarantee all enjoyment factors identified in our research.  

1.1 System-level problem and Subsystem breakdown 

 

𝑚𝑖𝑛         𝑓(𝑿, 𝑷) = [𝑓1(𝐱𝟏, 𝐩𝟏) + 𝑓2(𝐱𝟐, 𝐩𝟐) + 𝑓3(𝐱𝟑, 𝐩𝟑) + 𝑓4(𝐱𝟒, 𝐩𝟒)] 
 

𝑊ℎ𝑒𝑟𝑒         

𝐱𝟏 = (, 𝜌, 𝑑𝑜, 𝑑𝑖, 𝜎, 𝐸) ∈  ℝ ; 𝐩𝟏 = (𝑊𝑐, 𝑊𝑝, 𝑔, 𝜎′, 𝐸′)  

𝐱𝟐 = (… ) ∈  ℝ ; 𝐩𝟐 = (… )  
𝐱𝟑 = (… ) ∈  ℝ ; 𝐩𝟑 = (… )  
𝐱𝟒 = (𝒚, 𝜽) ∈  ℝ ∈  𝒮 𝑀𝑜𝑑𝑒𝑙  ; 𝐩𝟒 = (𝒔, 𝑔, 𝑢, 𝐺𝑚𝑎𝑥)  
 

Subject to: the constraints defined in each subsystem optimisation. 
 

 
Four subsystems are considered as modules of our rollercoaster: the 

geometries of the drop, loops and zero-g rolls, as well as the features 

of the cart.  The design of the cart has implications on the whole 

rollercoaster. For example, the number of people per cart affects the 

impact load and therefore the speed at which the coaster enters each 

section of track.  

The first subsystem analyses the cart. It optimises the efficiency of 

the wheels by designing them such that the rolling resistance is as small 

as possible. The dimensions and material of the wheels, and the 

coefficient of friction are outputs.  

The second subsystem uses the rolling resistance returned from the 

first subsystem to optimise the geometry of the track during the initial 

drop. The objective function is to maximise velocity as the rollercoaster 

exits the drop, within the boundaries of safe G force limits and terminal 

velocity.  

The third subsystem uses height returned from the second subsystem 

to generate a loop that maximises the G-force incident on the passenger, 

whist keeping within safe G-force boundaries. 

The final subsystem looks at the shape of the launch section of a Zero-

G Roll, an inversion in which passengers experience a feeling of 

weightlessness. The optimisation maximises the length of this airtime 

while avoiding sudden G-force changes. 

As the subsystems have no interdependencies and there are no trade-

offs between them, minimising the system level objective function is 

achieved by minimising each of the subsystems individually; resulting 

in a rollercoaster with minimal rolling resistance, a maximum drop 

speed, a loop with maximum G force, and a zero-G roll with maximum 

air-time. 

2. Subsystem 1: The Cart 

Rollercoasters are said to be more enjoyable when the cart can reach 

a high maximum velocity, as this makes accelerations faster and they 

experience more fluctuations in G-force [3]. The higher the speed for a 

given track length, the quicker the ride and the shorter the queue time. 

Therefore, the cart must be designed for the highest possible speed, by 

increasing the efficiency of the cart components.  

Subsystem 1 focussed on optimising the wheels. The aim is to reduce 

the rolling resistance of the wheels so minimal energy is wasted to 

overcome friction, resulting in a higher maximum possible velocity.  

2.1 Optimisation formulation: Summary 

𝑚𝑖𝑛         𝑓(𝑤, 𝜌, 𝑑𝑜, 𝑑𝑖 , 𝜎, 𝐸) = 

√
(

3
2𝜋𝑤 (𝑊𝑐 + 𝑊𝑝) +

3𝜌𝑔
8

(𝑑𝑜
2 − 𝑑𝑖

2)) (
1 − 𝜎2

𝐸
+

1 − 𝜎′2

𝐸′ )

𝑑𝑜

∙ (𝑊𝑐 + 𝑊𝑝 +
𝜋𝜌𝑤𝑔

4
(𝑑𝑜

2 − 𝑑𝑖
2)) 

 

where  𝐱 = (𝑤, 𝜌, 𝑑𝑜, 𝑑𝑖 , 𝜎, 𝐸)  
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 𝐩 = (𝑊𝑐, 𝑊𝑝, 𝑔, 𝜎′, 𝐸′) 

 

s.t.  ℎ1(𝑊𝑐):  𝑊𝑐 = 2624.175 

 ℎ2(𝑊𝑝):  𝑊𝑝 = 981 

 ℎ3(𝜎′):  𝜎′ = 0.295 

 ℎ4(𝐸′):  𝐸′ = 200 × 106 

 

 𝑔1(𝑤):  𝑤 − 0.08 ≤ 0 

 𝑔2(𝑤):  0.01 − 𝑤 ≤ 0 

 𝑔3(𝑑𝑜):  𝑑𝑜 − 0.1775 ≤ 0 

 𝑔4(𝑑𝑜):  0.03 − 𝑑𝑜 ≤ 0 

 𝑔5(𝑑𝑖):  𝑑𝑖 − 0.06 ≤ 0 

 𝑔6(𝑑𝑖):  0.01 − 𝑑𝑖 ≤ 0 

 𝑔7(𝑑𝑜, 𝑑𝑖):  𝑑𝑖 − 0.25𝑑𝑜 ≤ 0 

 𝑔8(𝑑𝑜, 𝑑𝑖):  0.1𝑑𝑜 − 𝑑𝑖 ≤ 0 

 𝑔9(𝑤, 𝑑𝑜, 𝑑𝑖): 
𝜌𝑤𝜋

4
(𝑑𝑜

2 − 𝑑𝑖
2) − 1 ≤ 0 

 𝑔10(𝑤, 𝑑𝑜, 𝑑𝑖): 0 −
𝜌𝑤𝜋

4
(𝑑𝑜

2 − 𝑑𝑖
2) ≤ 0 

 𝑔11(𝑤, 𝑑𝑜, 𝑑𝑖): 𝑤 − 0.6𝑑𝑜 ≤ 0 

2.2  Modelling approach 

The mathematical model is derived from first principles.  

2.2.1 Exploring the Problem Space: Derivation 

Rolling resistance is the force required to overcome friction. It is 

specific to wheels rotating as they have a very small surface area in 

contact with the ground at any one moment. The equation for rolling 

resistance [5] is a function of the coefficient of rolling friction (Crr) and 

the load on the wheel (W). 
𝐹 = 𝐶𝑟𝑟𝑊 

𝐶𝑟𝑟 = √
𝑧

𝑑𝑜
  

𝑧 =
2𝑊𝐷

𝜋𝑤
 

Where D is a function of the Poisson ratio of the wheel (𝜎) and the 

track (𝜎′), and Young’s Modulus of the wheel (E) and track (E’). 

𝐷 =
3

4
(

1 − 𝜎2

𝐸
+

1 − 𝜎′2

𝐸′
) 

Load on the wheel is the sum of the weight of the cart (𝑊𝑐), passengers 

(Wp) and wheel (Ww). 

𝑊 =  𝑊𝑐 + 𝑊𝑝 + 𝑊𝑤 

The wheel is modelled as a solid cylinder with a cut out. This is a simple 

design, much like other wheels available on the market [6].  

The Load on the wheel can be broken down further, by calculating 

the load from the wheel itself.  

𝑊𝑤 =
𝜋𝜌𝑤𝑔

4
(𝑑𝑜

2 − 𝑑𝑖
2) 

The equation for rolling resistance can then be reformulated using 

equations for the weights and resistance coefficient: 

√
(

3
2𝜋𝑤

((𝑊𝑐 + 𝑊𝑝) +
3𝜌𝑤𝑔

8
(𝑑𝑜

2 − 𝑑𝑖
2))) (

1 − 𝜎2

𝐸
+

1 − 𝜎′2

𝐸′ )

𝑑𝑜

∙ (𝑊𝑐 + 𝑊𝑝 +
𝜋𝜌𝑤𝑔

4
(𝑑𝑜

2 − 𝑑𝑖
2)) 

 

2.2.2 Material Selection 

Young’s Modulus was plotted against the Poisson ratio for all 

materials (Error! Reference source not found.). Using CES, 

constraints were added to filter down the options based on the 

performance values of polyurethane; the current wheel material for 

rollercoasters (Table 2.2.2.1). The selected material had to have the 

same or higher performance requirements than PU. 

Table 2.2.2.1 Material selection constraints 

1𝑒103 ≤ 𝜌 ≤ 2𝑒103 Density (kg/m3) 

38 ≤ 𝜎𝑦 Yield Strength (MPa) 

48 ≤ 𝜎𝑐  Compressive Strength (MPa) 

14 ≤ 𝜎𝑓 Fatigue Strength at 107 Cycles (MPa) 

Acceptable, Excellent Fresh Water Durability 

𝐶𝑂2 ≤ 8 CO2 Footprint, Primary Production (kg/kg) 

 
 9 polymers passed these constraints ( 

Table 2.2.2.2) alongside the property values which determine the 

objective function. Error! Reference source not found. demonstrates 

the selection process. 

 

Table 2.2.2.2 Mechanical properties of wheel materials [7] 

2.2.3 Constraints 

Every variable has at least an upper and lower bound. Some of these 

are based on anthropometric data and others are taken from restrictions 

on the wheels available [6]. Other assumptions in  Constraints regarding 

Poisson’s Ratio and Young’s Modulus have been removed as the 

material will be selected from a pre-determined table of materials which 

have already undergone an initial optimisation filtering process. 

Table 2.2.3.1 relate the variables to one other, considering factors 

such as the inner diameter of the wheel relative to the outer diameter. 

Constraints regarding Poisson’s Ratio and Young’s Modulus have been 

removed as the material will be selected from a pre-determined table of 

materials which have already undergone an initial optimisation filtering 

process. 

Table 2.2.3.1 Subsystem 1 constraints 

𝑔1 The width of the wheels must be less than 10cm (the 
width of the tracks). 

[8] 

Material 
Poisson’s 

Ratio 

Young’s 

Modulus 

(GPa) 

Density 

(kg/m3) 

Polylactide (PLA) 0.4 3.58 1.27e3 

Polyurethane (PUR) 0.42 2.07 1.24e3 

Polystyrene (PS) 0.4 3.28 1.04e3 

Polyoxymethylene (POM) 0.407 3.2 1.43e3 

Polymethyl methacrylate 

 (PMMA) 
0.4 3.23 1.2e3 

Polyethylene terephthalate (PET) 0.4 3.01 1.39e3 

Polycarbonate (PC) 0.41 2.52 1.21e3 

Polyamides (Nylons, PA) 0.42 2.04 1.15e3 

(ABS) 0.41 2.75 1.06e3 

Average 0.407 2.853 1.211e3 

Figure 2.2.1.3 Diagram of the Wheel Dimensions 

Figure 2.2.1.1 Poisson Ratio vs. Young's Modulus  

Figure 2.2.1.2 Young's Modulus vs. Poisson Ratio for selected materials 
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𝑔2 The wheels must be over 1cm thick (the minimum 
thickness available to buy). 

[6] 

𝑔3 The outer wheel diameter must be under 0.3775m, half 

the average length between a person’s knee and the floor 

when sat, plus the clearance from the cart to the ground. 

[9] 

𝑔4 The outer wheel diameter must be over 3cm. This is the 

minimum diameter of available wheels. 

[6] 

𝑔5 The inner wheel diameter must be under 6cm. This is the 

maximum diameter of available hubs. 

[6] 

𝑔6 The inner wheel diameter must be over 1cm. This is the 

minimum diameter of available hubs.  

[6] 

𝑔7 The inner diameter must be less than 25% the outer 
diameter of the wheel. This is the maximum safe ratio 

recommended 

[6] 

𝑔8 The inner diameter of the wheel must be over 10% the 

outer diameter of the wheel. This is the minimum ratio 
possible. 

[6] 

𝑔9 The mass must be under 1kg per wheel.   

𝑔10 The mass must be over zero.  

𝑔11 The width of the wheel must be less than half the outer 

diameter of the wheel. 

 

2.2.4 Assumptions 

Table 2.2.4.1 and Table 2.2.4.2 summarise assumptions made and the 

logic behind them. 

Table 2.2.4.1 Subsystem 1 formulated assumptions 

ℎ1 The weight of the cart, 𝑊𝑐, is taken to be 267.5*g per 

person. For four people in a cart with four wheels, this 

accounts to a load of 267.5*g per wheel. 

[10] 

ℎ2 The load from one person, 𝑊𝑝, is the maximum load 

permitted to ride a roller coaster, 100*g. 

[11] 

ℎ3 The Poisson Ratio of the steel rails is 0.295. [12] 

ℎ4 The Young’s Modulus of the steel rails is 200 x 106. [12] 

 

Table 2.2.4.2 Non-mathematical assumptions 

The wheel is imperfectly elastic; therefore, b is negligible. [13] 

The wheel is simplified and made of one solid material.  

𝑏 ≪ 𝑤, the length of contact area between the wheel and rail is 

much smaller than the width of the wheel. 

[13] 

𝑏 ≪ 𝑑𝑜, the length of contact area between the wheel and rail is 

much smaller than the outer diameter of the wheel. 

[13] 

There are four people per cart.  

There are four wheels per cart.  

The load is split equally between each wheel.  

There are 6 carts, with a total of 24 people per ride.  

The rails are made of carbon steel.  [14] 

2.2.5 Linear Analysis 

Linear analysis was done to find out if the function was linear or 

nonlinear, while also giving a better understanding of the problem 

space. Two values at a time were plotted against the objective function. 

It can be seen from Figure 2.2.5.1 that the objective function is non-

linear. The width, inner diameter and outer diameter of the wheel all 

change in a non-linear fashion relative to one another and so nonlinear 

methods must be used to solve the optimisation problem.  

Figure 2.2.5.1 Determining linearity of the objective function. 

2.2.6 Monotonicity Analysis 

As seen in Table 2.2.6.1, the objective function increases with respect 

to both w and do, but decreases with respect to di. It is unknown whether 

it is increasing or decreasing with respect to 𝜌, 𝜎, and E. g10 is active 

with respect to w, and g7 is active with respect to do. All variables are 

constrained from above and below. Inactive constraints are highlighted 

in grey. 

After doing monotonicity analysis it can be confirmed that the 

problem is well constrained, and the model cannot be simplified further.  

Table 2.2.6.1 Monotonicity analysis 

 w do di ρ σ E 

𝑓 + + - U U U 

𝑔1 +      

𝑔2 -      

𝑔3  +     

𝑔4  -     

𝑔5   +    

𝑔6   -    

𝑔7  - +    

𝑔8  + -    

𝑔9 + + - +   

𝑔10 - U U -   

𝑔11 + -     

2.2.7 Reformulation of the problem 

Following monotonicity analysis, the problem can be simplified. 
𝑚𝑖𝑛         𝑓(𝑤, 𝜌, 𝑑𝑜 , 𝑑𝑖 , 𝜎, 𝐸) = 

√
(

3
2𝜋𝑤

(𝑊𝑐 + 𝑊𝑝) +
3𝜌𝑔

8
(𝑑𝑜

2 − 𝑑𝑖
2)) (

1 − 𝜎2

𝐸
+

1 − 𝜎′2

𝐸′ )

𝑑𝑜

∙ (𝑊𝑐 + 𝑊𝑝 +
𝜋𝜌𝑤𝑔

4
(𝑑𝑜

2 − 𝑑𝑖
2)) 

 

where  𝐱 = (𝑤, 𝜌, 𝑑𝑜, 𝑑𝑖 , 𝜎, 𝐸)  

 𝐩 = (𝑊𝑐, 𝑊𝑝, 𝑔, 𝜎′, 𝐸′) 

 

s.t.  ℎ1(𝑊𝑐):  𝑊𝑐 = 2624.175 

 ℎ2(𝑊𝑝):  𝑊𝑝 = 981 

 ℎ3(𝜎′):  𝜎′ = 0.295 

 ℎ4(𝐸′):  𝐸′ = 200 × 106 

 

 𝑔1(𝑤):  𝑤 − 0.08 ≤ 0 

 𝑔2(𝑤):  0.01 − 𝑤 ≤ 0 

 𝑔7(𝑑𝑜, 𝑑𝑖):  𝑑𝑖 − 0.25𝑑𝑜 ≤ 0 

 𝑔9(𝑤, 𝑑𝑜, 𝑑𝑖): 
𝜌𝑤𝜋

4
(𝑑𝑜

2 − 𝑑𝑖
2) − 1 ≤ 0 

 𝑔10(𝑤, 𝑑𝑜, 𝑑𝑖): 0 −
𝜌𝑤𝜋

4
(𝑑𝑜

2 − 𝑑𝑖
2) ≤ 0 

 𝑔11(𝑤, 𝑑𝑜, 𝑑𝑖): 𝑤 − 0.6𝑑𝑜 ≤ 0 

2.3 Optimise 

As the density, Young’s Modulus and Poisson Ratio are independent 

of the physical dimensions of the wheels, they are initially set to 

constants. These values are the averages of the material options 

available. The fmincon algorithm was used to solve the optimisation, 

using both SQP and interior points. The objective function lends itself 

well to gradient based methods as it is a constrained, nonlinear function 

derived from first principles.   

This was used to optimise the wheel dimensions, w, do, and di. 

MATLAB was then used to identify the optimal material for the wheels 

by calculating the smallest value of rolling resistance. Parametric 

analysis was then conducted. 

2.3.1 fmincon Interior Points Algorithm 

fmincon interior points was used to find the optimal values initially. 

This found the local minima of the objective function. This method is 

simple to implement and was fast at solving the optimisation problem. 

Table 2.3.1.1 shows the results of this method. 

Table 2.3.1.1 Results of fmincon Interior Points 

fmincon can often become stuck at a local minimum, and so to get 

around this problem multiple initial guesses were tested, and the optimal 

solution was identified from these.  

t 𝐝𝐨(m) 𝐝𝐢(m) 𝐰(m) Frr (N) 

0.200743 0.12 0.03 0.05309 1024 
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Globalsearch was also used to confirm the identified solution 

was a global minimum. fmincon sqp was also used to check the 

values.  

2.3.2 Fmincon Sequential Quadratic Programming (sqp) 

Algorithm 

To test the reproducibility of the results identified from fmincon 

interior points, fmincon sqp was used. This confirmed the correct 

results. This algorithm ran 6 times and took 0.181446 seconds, slightly 

faster than fmincon interior points. This resulted in a rolling 

resistance of 1024 N. 

2.3.3 Material Selection 

The materials were optimised using the selected materials from CES. 

The table of properties, including the Young’s Modulus, density and 

Poisson Ratio, was imported to MATLAB. The objective function was 

calculated for each material based on these properties and the optimised 

dimensions found from fmincon. Each value was plotted in a graph 

which can be seen in Figure 2.3.3.1. The minimum value was identified 

using the min(obj) function. PLA was identified as the material with 

the lowest rolling resistance, so this will be the material for the wheels. 

This resulted in a final rolling resistance of 919 N.  

2.3.4 Parametric Analysis 

A parametric analysis was undertaken following optimisation by 

keeping all values constant at their averages and independently 

changing one or two variables. It can be seen from this that the Elastic 

modulus and Poisson’s ratio have the most effect on the objective 

function, and the effect of density is nearly negligible in comparison. A 

surface was plotted from wheel dimension variables to determine their 

effect the objective function. By looking at the gradient of the surfaces, 

it can be concluded that both the width of the wheel and the inner 

diameter have a much smaller effect than the outer diameter of the 

wheel. When put into the context of a physical wheel this makes sense, 

as the outer diameter has much more effect on the velocity of the wheel. 

The inner diameter and width affect the mass of the wheel, which is less 

significant than the diameter.  

2.3.5 Minimising drag 

It is assumed the energy powering the cart is constant. Therefore, to 

maximise potential velocity, the cart components must be designed for 

efficiency. To do this, the cart body can be designed to minimise drag. 

𝐷 =
1

2
𝐶𝜌𝑣2𝐴 

𝐶 (coefficient of drag) is dependent on the shape of the front of the 

cart so this can be automatically optimised. Velocity is a constant as the 

aim is to reduce the drag independently of velocity. The material of the 

cart is assumed to be steel, so density is also pre-determined. The only 

variable to be optimised is the area of the front of the cart. This is 

reduced my minimising the number of people per row, as the height will 

be designed to accommodate the majority of passengers. However, as 

the aim of the system is to optimise for enjoyment, and it may be 

assumed that to ride with a friend makes the experience more enjoyable, 

there will need to be at least two people per row. Therefore, to maximise 

enjoyment and minimise frontal area, there will be two people per row, 

and two rows per cart. The maximum number of carts is 6. To increase 

enjoyment, the queue time must be minimised, so each ride must 

accommodate as many people as possible to increase flow. Therefore, 

the number of carts will be 6 and the ride will accommodate 24 people 

at a time. This all contributes to the mass of the cart, and the output 

values to be taken to the system level optimisation are shown in Table 

2.3.5.1. 

Table 2.3.5.1 Output values from optimisation solution 

Variable Value 

Number of people per ride 24 

Mass per cart 1.4279e3 kg 

Combined mass of all carts 8.8372e3 kg 

Load on tracks from the whole train 8.6693e4 N 

2.4 Discussion 

fmincon sqp was the most computationally efficient algorithm, 

providing optimal results in the shortest amount of time. Following 

wheel-dimension optimisation, the selection of a new material reduced 

the rolling resistance per wheel from 1190 N to 919 N. 

It was challenging to optimise the wheel dimensions and material 

selection simultaneously, so the algorithm could be further improved by 

combining the variables into one function. However, the material and 

dimensions of the wheels are independent of one another, so they were 

treated as two separate optimisation problems and the final optimised 

values are the same regardless.  

The optimisation does not take into consideration some factors which 

would make it applicable in the real-world. To do this, variables such 

as forces on the side wheels (which keep the cart on the track when it 

banks) must be considered, alongside forces on the wheels below the 

track (which stop the cart falling off when upside down). 

To develop the optimisation problem further the number of wheels 

per cart could be added as a variable. This would add an interesting 

factor to the optimisation as having more minimises the load per wheel, 

but the increased number of contact points with the track increases 

combined friction. 

Figure 2.3.3.1 Objective function value for each material option 

(a) (b) 

(c) (d) 

(e) (f) 
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3. Subsystem 2: The Drop 

3.1.1 Introduction 

The initial drop inputs energy into the 

rollercoaster system. For our purposes the 

rollercoaster is pulled up a ramp by a chain 

driven by an engine, and once it crosses the 

crest of the drop the rollercoaster will 

accelerate down the slope under gravity. It is 

important enough energy is given to the 

rollercoaster to ensure it can complete the 

rest of the track. To maximise passengers’ 

enjoyment, it is important to maximise 

velocity. Faster rollercoasters are more 

enjoyable, and a larger velocity results in 

larger acceleration (or G force) when the 

rollercoaster changes direction. The velocity 

is limited by the terminal velocity of the rollercoaster combined with 

the bearing friction, and acceleration must be kept within safe limits 

(both in terms of magnitude and duration) so as not to cause injury. This 

subsystem will optimise the geometry of the curve after the peak, the 

drop itself and the curve following the drop (Figure 1). 

3.1.2 Derivation 

The subsystem can be modelled from first principles by combining 

Newton’s second law (equation 1), centripetal force (equation 2), force 

due to friction (equation 3) and force due to air resistance (equation 4) 
1:     𝑚 ∙ 𝑎 = 𝑔 ∙ sin(𝜃) − 𝐹𝑎𝑖𝑟 −  𝐹𝑟   

2:     𝐹𝑐 =  
𝑚∙𝑣2

 𝑟𝑚𝑖𝑛
 

3:     𝐹𝑟 =  𝐶𝑟𝑟 ∙ 𝑚 ∙ 𝑔 ∙ cos(𝜃) 

4:    𝐹𝑎𝑖𝑟 =  =
1

2
∙ 𝜌 ∙ 𝐴 ∙ 𝐶𝐷 ∗ 𝑣2 

To model the subsystem accurately air resistance needs to be 

considered at each point along the drop, turning the subsystem equation 

into a differential equation (equation 5)            

5:     
𝑑2𝑥

𝑑𝑡2
= 𝑔 ∙ sin(𝜃) −

𝑘

𝑚
∙ (

𝑑𝑥

𝑑𝑡
)2 −  𝐶𝑟𝑟 ∙ 𝑔 ∙ cos(𝜃)   

Where:        𝑘 =  
1

2
∙ 𝜌 ∙ 𝐴 ∙ 𝐶𝐷 

This equation can be solved using Euler’s method, which involves 

calculating velocities at set time intervals. With this technique the 

maximum velocity can be established, given the time of the drop and 

the geometry of the track. With the maximum velocity confirmed, the 

acceleration of the roller coaster as it traverses the exit curve can be 

calculated using centripetal force (equation 2).  

6:      (𝑣 + 1) = 𝑣(𝑖) + ∆𝑡 ∙  
𝑑2𝑥

𝑑𝑡2
 

The iterative equation (equation 6) is calculated firstly during the 

curve after the peak, this considers the changing angle from the 

horizontal that ranges from 0 to incline of the drop 𝜃. This will model 

the roller-coaster gradually accelerating as the track curves. The next 

step is to apply the same iterative equation on the drop itself, the only 

difference being 𝜃 is the constant angle as the track is straight.  

The equation will return a discrete array of velocities and a time step 

of ∆𝑡, when given the total time and time spent on the curve as inputs. 

This velocity profile can then be plotted (Figure 4.1.1.1), showing the 

acceleration over the initial curve, and the deceleration as the 

rollercoaster reaches its terminal velocity. The graph is integrated to 

return the displacement. 

 
Figure 4.1.1.1 

 

Because the equation is complex and must be solved iteratively the 

approach was taken to apply the equation to many different inputs of 

variables 𝜃, radius, time of curve and total time and build a database of 

different experimental values. This allowed control over how many 

datapoints were present in the dataset, and the range of each input value.  

3.2 Optimisation formulation 

To create an enjoyable roller-coaster experience the objective 

function is to maximise maximum velocity.  

3.2.1 Variables 

The objective function is defined by the variables shown in table 

4.2.1.1. 

Table 4.2.1.1: Subsystem 2 Variables 

𝑑 The length of the drop   

𝑣𝑐 Velocity after initial curve  

𝐺 G Force   

𝑡𝑇 Total time of initial curve and drop  

𝑡𝑐 Time of initial curve  

𝜃 Theta  

  𝑟 Radius of exit curve  

3.2.2 Constraints 

Constraints were chosen by analysing the limits of the physical 

geometry of the track, analysing a database of rollercoasters to evaluate 

typical values (Figure 4.2.2.1), researching government regulations [15] 

and safety limits [4]. Constraints were considered at the sampling stage. 

 
Figure 4.2.2.1 

 

Table 4.2.2.1: Subsystem 2 constraints 

𝑔1 The drop height must be less than 76m [16] 

𝑔2 The drop height must be greater than 0m  

𝑔3 The velocity after the initial drop must be less than the 

terminal velocity. 

 

𝑔4 The velocity after the initial drop must be greater than 

0ms-1. 

 

𝑔5 The G force must not exceed 7 Gs (68.67ms-2) [4] 

𝑔6 The G force must be greater than 1 G (9.81ms-2)  

𝑔7 The time of the initial curve must be greater than the total 

time  

 

𝑔8 The total time must be less than 8000ms  [17] 

𝑔9 The time of the initial curve must be greater than 0s.  

𝑔10 The time of the initial curve must be less than 3000ms [17] 

𝑔11 The incline angle (from the horizontal) must be less than 
90° 

 

𝑔12 The incline angle must be more than 60°  

𝑔13 The radius of the exit curve must be less than 40m [18] 

𝑔14 The radius of the exit curve must be more than 20m [18] 

3.2.3 Assumptions 

The subsystem approximates the gradually changing radius of the exit 

curve as a curve of constant radius. In reality, the maximum acceleration 

(G force) will occur instantaneously at the point of minimum radius, 

however in this model the maximum G force will be constant. This will 

not affect the optimisation as the maximum G force will not exceed safe 

limits because of the constraints. If the objective was to return the exact 

geometry of the track, then this would be remodelled with greater 

accuracy. 

Figure 4.1.1.1 
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Table 4.2.3.1: Subsystem 2 formulated assumptions 

ℎ1 The roller-coaster is at sea-level and at 15 °C and air 

density is 1.225 kg/m3 

[1] 

ℎ2 The frontal area of the roller-coaster is 7m2 [19] 

ℎ3 The coefficient of drag is 1.2 [20] 

ℎ4 Acceleration due to gravity is 9.81ms-2 [21] 

ℎ5 The mass of the rollercoaster is 500kg [22] 

ℎ6 The coefficient of friction is returned by the previous sub-

system. 
 

3.2.4 Objective Function 

Min:  𝑓(𝑑, 𝑣𝑐 𝐺, 𝑡𝑇 , 𝑡𝑐 , 𝜃, 𝑟 ) 

 

Where:   𝒙 =  (𝑑, 𝑣𝑐  𝐺, 𝑡𝑇 , 𝑡𝑐  , 𝜃, 𝑟 )  ∈  𝑋 ∈  ℝ𝑛 

     𝒑 =  ( 𝜌, 𝐴, 𝐶𝐷,  𝑔, 𝑚,  𝐶𝑟𝑟 ) 

 

ℎ1(𝜌):   𝜌 − 1.1 =  0 

ℎ2: (𝐴):   𝐴 − 7 =  0 

ℎ3(𝐶𝐷):   𝐶𝐷 − 1.2 =  0 

ℎ4(𝑔):   𝑔 − 9.81 =  0 

ℎ5(𝑚):   𝑚 − 500 =  0 

ℎ6(𝜇):   𝐶𝑟𝑟 − 0.01 =  0 

 

𝑔1(𝑑):   𝑑  ≤ 76 

𝑔2(𝑑):   − 𝑑  ≤ 0 

𝑔3(𝑣𝑐, 𝑔, 𝑚, 𝜌, 𝐴, 𝐶𝐷):   𝑣𝑐  ≤ √
2 ∙ 𝑔 ∙ 𝑚

𝜌 ∙ 𝐴 ∙ 𝐶𝐷

 

𝑔4(𝑣𝑐):   − 𝑣𝑐  ≤ 0 

𝑔5(𝑎):   𝐺  ≤ 7 

𝑔6(𝑎):   − 𝐺  ≤ 1 

𝑔7(𝑡𝑇, 𝑡𝑐):    t - 𝑡𝑇 ≤ 0 

𝑔8(𝑡𝑇) :   − 𝑡𝑇  ≤ 8000 

𝑔9(𝑡𝑐):    𝑡𝑐 ≤ 0 

𝑔10(𝑡𝑐) :   − 𝑡𝑐  ≤ 3000 

𝑔11(𝜃):    𝜃 ≤ 90 

𝑔12(𝜃):   − 𝜃 ≤ 60 

𝑔13(𝑟):    𝑟 ≤ 40 

    𝑔14(𝑟):   − 𝑟 ≤ 20   

3.3 Modelling approach 

3.3.1 Sampling 

Equation 6 and 2 were combined into the ‘GenerateData’ function 

which would take variables (total time), (time of initial curve), (theta), 

(radius) and other static values. The function returns the remaining 

variables of (maximum velocity), (drop distance), (initial slope 

velocity), (G force). Building the database has 𝜃(n4) time complexity 

for a value of n defined in the script.  

Latin hypercube sampling was used to sample the values of the 

variables between the constraints in order to build the database. 

3.3.2 Linear regression 

The data was shuffled and normalised between values of 0 and 1, 

using (equation 7), to ensure the range of values was comparable and 

avoid any unwanted scaling of the beta values. 

Equation 7  𝑋′ =
𝑋− 𝑀𝑖𝑛(𝑥)

𝑀𝑖𝑛(𝑋)−𝑀𝑎𝑥(𝑋)
 

The database was split into features and labels and then each matrix was 

split again into training and testing data, with a split of 75:25 From here 

linear regression was implemented on the dataset, using Matlab’s 

‘mvregress’ multi-variate linear regression function. This resulted in 

beta values of (-0.2004, -0.3968, 0.1830, 0.9578, 2559, 0.1553, 0.0483) 

and an r-squared value of 0.9971, indicating an excellent fit to the data. 

The residuals were plotted (Figure 4.3.2.1) and their approximate 

normal distribution indicates the linear model is a good fit to describe 

the data and the assumption that the data is linear is a good one, however 

there is a slight skew which indicates the data is heavy tailed, meaning 

there are several extreme positive or negative residuals. 

  

3.4 Explore the problem space 

To gain a better understanding of the problem parameters were 

plotted independently to analyse how the function behaved as different 

variables changed. The data point values of total time, max velocity and 

drop 

distance (Figure 4.4.1) show a slight curve due to the non-linear effects 

of considering air resistance. 

 
Figure 4.4.1 

 
The monotonicity of the constraints is shown in table 4.4.1. The 

function is decreasing with regard to d, 𝑣𝑐 , 𝑮, 𝑡𝑇, 𝑡𝑐, 𝜃, 𝑟, increasing 

with regard to 𝑡𝑐  and is undefined with regard to 𝑮 and 𝑟. The table 

shows the problem is well bounded. 𝑔7  and 𝑔10  both bound  𝑡𝑐  but 

neither can be eliminated because they are both active constraints for 

different variables. Therefore, the problem cannot be simplified further. 

Table 4.4.1: Monotonicity Analysis 

Constraint 𝒅 𝒗𝒄 𝑮 𝒕𝑻 𝒕𝒄 𝜽 𝒓 

𝒇 - - U - + - U 

𝒈𝟏 -       

𝒈𝟐 +       

𝒈𝟑  -      

𝒈𝟒  +      

𝒈𝟓   -     

𝒈𝟔   +     

𝒈𝟕    + -   

𝒈𝟖    -    

𝒈𝟗     +   

𝒈𝟏𝟎     -   

𝒈𝟏𝟏      -  

𝒈𝟏𝟐      +  

𝒈𝟏𝟑       - 

𝒈𝟏𝟒       + 

3.5 Optimise 

3.5.1 Sequential Quadratic Programming 

Matlab’s ‘fmincon’ function was used to find the minimum point 

within the constraints. The SQP algorithm was chosen due to its speed 

and because the optimisation formulation is constrained and non-linear. 

The constraints were added as inequality constraints as well as the upper 

bounds and lower bounds which were defined before building the 

database. Once the algorithm had been applied to the problem the 

normalisation was removed and the results are shown below. 

 

 

 

Figure 4.3.2.1 
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Table 4.5.1.1: Sequential Quadratic Programming values 

3.5.2  Genetic Algorithm 

The genetic algorithm was run several times to verify the 

results obtained by the SQP algorithm. The values returned by 

the genetic algorithm are shown in table 4.5.2.1 and vary slightly 

from the results obtained by SQP. The time taken for the genetic 

algorithm to run is much larger than the SQP algorithm. Each 

generation (usually between 100 and 200) is plotted against the 

best score value and the mean score value. (Figure 4.5.2.1) 
 

Table 4.5.2.1: Genetic Algorithm values 

 
Figure 4.5.2.1 

3.5.3 Parametric Analysis 

Once the optimisation was complete, a parametric study was 

conducted by sequentially picking normalised variables to plot against 

the maximum velocity and the total time over drop. Whilst holding the 

other variables constant at their mean values. By examining the 

gradient, the variables can be compared to one another visually and the 

behaviour of the function can be better understood. Figure 4.5.2.2 

shows the effects of varying the normalised angle of incline and 

normalised radius, and Figure 4.5.2.3 shows the effects of normalised 

drop distance and normalised time over initial curve. It can be seen that 

the changes in the normalised radius have a lesser effect on the overall 

function than the normalised incline. The normalised drop distance has 

the most effect. This makes sense when considering how the data 

generation function works; the radius only effects the value of G force, 

not the maximum velocity and the drop distance would have a larger 

impact on the objective function due to equation 8. 

 

Equation 8 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒
 

 
Figure 4.5.2.2 

 
Figure 4.5.2.33 

 

The results were further validated by modelling the geometry of the 

track in Solidworks, to conduct a visual sanity check. 

3.6 Multi objective Problem Reformulation 

3.6.1 Pareto search 

The problem was reformulated to maximise both the velocity at the 

end of the drop and the maximum centripetal acceleration at the exit 

curve. The original optimisation objective was combined with the 

objective function below, with the same constraints a before. 

 

Min: 𝑓(𝑥) = [𝑓1(𝑥),
𝑚∗ 𝑓1(𝑥)2

𝑟
] 

Where:   𝒙 =  (𝑑, 𝑣𝑐  𝐺, 𝑡𝑇 , 𝑡𝑐  , 𝜃, 𝑟 )  ∈  𝑋 ∈  ℝ𝑛 

 

The normalised pareto set for this formulation is shown in Figure 

4.6.1.1. The reason for the discontinuity may be due to concavities on 

the objective front or may indicate two distinct feasible regions. 

 
Figure 4.6.1.1 

When choosing optimal value from the pareto set, the velocity 

objective is prioritised because a greater velocity not only results in a 

more enjoyable experience, but also inputs more energy into the rest of 

the rollercoaster to allow it to traverse more loops and zero-G rolls, 

further improving the system level objective function as a whole.  

3.6.2 Weighted Multi-Objective Optimisation  

To calculate the optimised parameters Matlab’s fgoalattain algorithm 

was used. The goals were both set to 1 and the function of maximum 

velocity and G force were weighted as 1 and 0.7 respectively and 

adjusted slightly to constrain the problem. The results are shown in table 

4.6.2.1. 

𝒇(𝒅, 𝒗𝒄 𝑮, 𝒕𝑻, 𝒕𝒄 , 𝜽, 𝒓 ) 33.5309  ms-1 

𝒅 76 m 

𝒗𝒄  0.5  ms-1 

𝑮 6 G 

𝒕𝑻 6990.5 ms 

𝒕𝒄 1998.1 ms 

𝜽 90° 

𝒓 40 m 

Average Time taken to compute: 0.005522 s 

𝒇(𝒅, 𝒗𝒄 𝑮, 𝒕𝑻, 𝒕𝒄 , 𝜽, 𝒓 ) 33.6203 ms-1 

𝒅 82.8 m 

𝒗𝒄  0.5  ms-1 

𝑮 6 G 

𝒕𝑻 6654 ms 

𝒕𝒄 1930 ms 

𝜽 88.5° 

𝒓 38.5 m 

Average Time taken to compute: 27.606164 s 
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Table 4.5.2.1: fgoalattain values 

3.7 Discussion 

The SQP algorithm gave took the shortest amount of time to run and 

produced sensible results, verified against existing rollercoasters and 

research. The model was studied with parametric analysis and run 

through a genetic algorithm for further verification. Whereas previously 

the G force variable was constrained manually the multi-objective 

reformulation set both G force and velocity as objective functions, 

subsequently improving the formulation. The objective function could 

be made more accurate by modelling the exit curve as a clothoid curve 

rather than a curve of constant radius, which can result in large values 

of jerk. 

4. Subsystem 3: The Loop 

This subsystem aims to maximise passenger enjoyment by 

maximising the G-force levels experienced by the passengers, within 

constraints of safety and feasible geometry. As this method of 

increasing enjoyment is different to the others it provides more variety 

to the whole rollercoaster, further increasing enjoyment. 

4.1     Optimisation formulation  

4.1.1 Negative Null Form 

  

Minimise: 

𝑓(𝐶, ℎ𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥) =  ∑(𝐻𝑖 − 𝐺𝑖 )

𝑖

𝑛=1

 

Subject to:  

0 =  
𝐶

2 𝑔(2 ℎ𝑚𝑎𝑥 − 1)
−  𝜃 

0 =  
1

𝜃′
− 𝑅 

0 =  
2(ℎ𝑚𝑎𝑥 − ℎ )

𝑅
+ cos(𝜃) − 𝐺 

 

0 ≤ 𝐻𝑖 − 𝐺𝑖 
0 ≤ 𝑅𝑚𝑎𝑥 − 𝑅𝑖 
0 ≤ ℎ𝑚𝑎𝑥 − ℎ  

 

 

Symbol Meaning 

C  G-Force equation parameter 

h (m) Height of coaster section 

hmax (m) Maximum height of coaster section  

R (rad) Curvature of coaster section 

Rmax (rad) Maximum curvature of coaster section  

H (m/s^2) Safe G-force Levels over time 

G (m/s^2) G-force of coaster over time  

g (m/s^2) Gravity (9.81 m/s^2) 

θ (rad) Angle of coaster section relative to ground 

 

The minimisation problem is formed around using the given 

parameters to reduce the difference between the summations the plot of 

Safe G-force levels (H) and the G-Forces incident on the coaster over 

its journey (G). Practically, this means reducing the area between the 2 

when plotted.  

 

The plot of safe G-force levels (below in full) is taken from the 

ASTM standards for the design of safe amusement attractions [23] 

 
Figure 5.1.1 

 

To find the level of G-force the coaster is exposed to, we first 

combine expressions of circular acceleration and changing energy 

levels (from gravitational potential energy to kinetic energy) to find an 

equation for track angle, θ. The derivative of this is used to find the 

curvature of the curvature of the track, R. This is used with equations 

of forces incident on the coaster to find an equation for the G-force. 

These can be formed into key problem constraints.  

 
Figure 5.1.2 Free body diagram of a rollercoaster segment 

 

An inequality constraint is provided from obeying the above safety 

standards. At no point must the G-forces on the coaster exceed safe 

limits, otherwise the passengers may be harmed. More constraints are 

provided by geometry. The height and curvature values cannot exceed 

maximum values outlined below: 

 

Values Max Reason Min Reason 

C 5 G-Forces would 

surpass safe 

levels 

0 Track would 

curve 

downwards 

hmax  76 Limit of height 

provided by 

subsystem 2 

0 Limit of height 

provided by 

subsystem 2 

Rmax 0.2 Cart would be 

unable to go 

around the track 

0 Track would 

curve 

downwards 

 

 

4.1.2 Optimisation formulation Assumptions 

As with other sections, assumptions are made to simplify the 

problem:  

- Effects of 3-D track geometry are assumed to be 

negligible 

- Energy lost to drag and friction is assumed to be 

negligible 

- Variables to do with the material and cost of the track 

and the cart are assumed to be irrelevant 

- Start and end points have a track angle of 0 radians for 

simplicity 

- The track is on a flat plane. No holes will be dug into the 

ground, so the minimum height stays at 0. 

𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚 31.4552 ms-1 

𝑮 𝑭𝒐𝒓𝒄𝒆 6.408 G 

𝒅 100 m 

𝒗𝒄  0.5  ms-1 

𝑮 6.408 G 

𝒕𝑻 6700 ms 

𝒕𝒄 1947 ms 

𝜽 89° 

𝒓 22 m 

Average Time taken to compute: 0.019552  s 
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4.2 Modelling approach 

 

Given the complexity of the calculations involved a computational 

method would have to be used to model the problem. Since the 

parameters are set at the beginning of the problem and only first order 

differential equations are used, Euler’s method was chosen to model the 

problem. This method would break up the track into many smaller 

sections that can be analysed using a graph to find key information. As 

this would require large arrays, MATLAB was used to construct, 

analyse and optimise the model. 

 

In simple terms, the method would lay points of the track by running 

the previous segment’s parameters through these equations: 

𝑥𝑛+1 = 𝑥𝑖 + S*cos𝜃𝑖  

𝑦𝑛+1 = 𝑦𝑖 + S*sin𝜃𝑖  

𝜃𝑖+𝑛 =  𝜃𝑖 + 
𝑆 ∗ 𝐶

(
𝑣02

𝑔
) − 2 ∗ 𝑦𝑖

 

 

Where S is the length between each new point of track (In this model 

it was 0.1 m as this was found to retain good accuracy without 

sacrificing computational speed) and v0 is the speed the coaster starts 

the loop with, found using energy equations. Once a loop is completed, 

the x and y arrays can be plotted to see a representation of the loop. 

 

 
Figure 5.2.1 Loop made with parameters [4.8 35 0.1] 

 

The array of angles can then be used with the constraint functions to 

create a plot of the G-forces on the curve. Using the y values for each 

point, the speed along the loop can be found. This with the equations of 

uniform motion can show the time the coaster reaches each point, and 

this data used to scale the graph. 

 

 
Figure 5.2.2 G-force levels, parameters as above. Note that these 

parameters are unsuitable as they exceed the safety limits. 

 

The summations of the 2 G-force arrays are found and the difference 

between them used as a score of the parameter’s effectiveness, which 

we wish to minimise. If the parameters given cause the model to surpass 

a safety or curvature constraint, a large amount is added to the score, 

dissuading the parameter’s use and creating a ‘constraint wall’ that can 

be easily applied to this complex problem.  

 

The key assumptions here are the same as the above with one addition 

- The resolution of data that MATLAB gives is large 

enough. 

4.3 Explore the problem space 

Due to the complex parts of the problem, such as the first order 

differentials and nonlinear safety limits, linear monotonicity analysis 

wouldn’t be appropriate here, however the influence of certain 

parameters can still be observed by trial. Changing the height parameter 

alone, lengthens the track, so that it can keep the same G-force levels. 

Increasing the C parameter causes the loop to tighten, impacting the 

maximum curvature that the loop can take. 

 

 
Figure 5.3.1 – Changing the hmax variable 

 

  
Figure 5.3.2 – Changing the C variable 

 

To explore the problem space further, the model was run multiple 

times at many different values of hmax (from 10 m to 70 m) and C (from 

2 to 5). The scores of the results were collected and used to make a 

surface plot. 

 

 
Figure 5.3.3 – hmax vs C vs Score 
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Due to the large difference in scores, a minimum is hard to spot by 

eye, but many smaller values are visible and not would be suitable 

starting points for an optimisation algorithm.  Ridges can be seen on the 

surface. This is due to the step-like safety curve. The maximum of the 

surface, at C = 2.5 and hmax = 70 m, is a good example of this.  

 

 
The large kinetic energy from the drop and low level of G-force 

causes a long, slow loop, which is not completed by the time the safety 

curve decreases, causing a large score and a ridge along similar values 

of C. Also notable is that increasing the Rmax value did not change this 

plot, showing that hmax and C are the key boundaries. 

 

It was interesting to note from a problem space perspective that initial 

attempts at optimisation only contained the C and hmax variables. This 

gave a very low score by making the loop extremely small and short. 

This shows how important the Rmax variable is in getting a feasible 

solution. 

 

4.4 Optimise  

The variable and output of the problem are continuous and the are 

some constraints on the problem, therefore constrained gradient-based 

optimisation seems to be the most suitable optimisation algorithm to 

employ. The most efficient of the ones we have been taught, SPQ, is 

also packaged into MATLAB’s fmincon function, making application 

straightforward.  

 

Based off earlier problem space analysis a starting point of [1.5, 30, 

0.10] is used. It is important to use starting parameters that begin with 

the G-force under the safe levels as otherwise the optimiser gets stuck 

in a local minimum and doesn’t give a solution that obeys safety 

constraints. After 7 iterations and 170 runs of the function taking 43 

seconds, a solution is found that provides these graphs. 

 

 
Figure 5.4.1 – Optimal loop structure 

 

 
Figure 5.4.2 – Optimal G-force plot 

 

Parameter Optimised value 

C 3 

hmax 25.5714 m 

Rmax 0.1 rad 

Score 9.015137e+02 

For a full exploration of the optimisation problem different 

constrained gradient based optimisation algorithms were applied. The 

large-scale algorithm ‘interior-point’ was applied and gave a different 

result in a similar time (51 s). The score of the result was very low at 

2.098657e+01, however the resulting G-force plot surpassed safe 

limits, meaning it is not an appropriate answer. This implies that 

small-scale algorithms work better and that the model needs to be 

reassessed to more soundly constrain against minima that cross the 

safety limits. 

 

4.5 Results, Analysis and Next Steps 

The optimised loop would only need to have a start 25.5714 m below 

the top of the drop. This is feasible and can be added by the rising 

section of track after the end of subsystem 1. The G-force levels settled 

just below the second ‘step’ of the safety curve, giving a maximum level 

in a very short time. A shorter time would give a better answer but 

wouldn’t be possible due to the maximum curvature constraints.  

 

In all I am happy with this result. Next steps would be to act on the 

assumptions to make the model more complex and realistic, firstly 

taking energy losses into account and secondly to ensure this subsection 

can safely transition to the next. The equation for G-force can also be 

improved by adding a variable with respect to time, so the G-force plot 

can decay at the same rate as the safety plot. 

 

5. Subsystem 4: Zero-G Roll 

Zero-G rolls are a track section in which passengers experience 

weightlessness (airtime) while performing a 360 degrees inversion. 

This sensation is achieved as the track follows the same path that the 

cart would follow in projectile motion, and passengers experience zero 

G-force. Simultaneously, the track rolls around the heartline of 

passengers to perform the inversion. This subsystem’s objective is to 

maximise the airtime experienced by passengers of this rollercoaster 

while respecting safety constraints. The launch track section (on the left 

of the launch point in figure 6.1) determines the flight path and is the 

focus of this optimisation problem. Its curvature was modelled using 

parametric functions, and feasible designs were sampled using uniform 

ranges of inputs. This yielded a discrete, unconstrained design space. 

The optimal solution was found using discrete search algorithms. 

 
Figure 6.1 - a diagram of the cart (red) exiting the launch track 

5.1 Optimisation formulation  

5.1.1 Mathematical formulation 

Below is the mathematical representation of this optimisation 

formulation, where design variable vectors y and 𝜽  and parameter 

vector s were sampled from parametric functions that computed feasible 

track shapes. These are included in the constraints and explained in 6.2. 

𝑀𝑖𝑛              − 𝒇(𝐱, 𝐩) =
2 sin(𝜃𝑚𝑎𝑥) √𝑢2 − 2𝑔𝑦𝑚𝑎𝑥

𝑔
 

  

𝑊ℎ𝑒𝑟𝑒          𝐱 = (𝐲, 𝛉) ∈  ℝ ∈  𝒮 𝑀𝑜𝑑𝑒𝑙  ;  𝐩 = (𝐬,  𝑔, 𝑢, 𝐺𝑚𝑎𝑥)  
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

ℎ1(𝛉,  𝐬):         𝜃𝑚𝑎𝑥 − ∑
𝜕𝜃𝑖

𝜕𝑠𝑖

𝑖𝑚𝑎𝑥

𝑖=1

(𝑠𝑖 − 𝑠𝑖−1) = 0 

ℎ2(𝐲, 𝛉,  𝐬):    𝑦𝑚𝑎𝑥 − ∑ sin(𝜃𝑖) (𝑠𝑖 − 𝑠𝑖−1) = 0

𝑖𝑚𝑎𝑥

𝑖=1

 

ℎ3(𝐲, 𝛉,  𝐬):    𝑦𝑖+1 − 𝑦𝑖  − sin(𝜃𝑖) (𝑠𝑖+1 − 𝑠𝑖) = 0  
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ℎ4(𝑢):            𝑢 − 36.2389 = 0    
ℎ5(𝑔):            𝑔 − 9.81 = 0     
ℎ6(𝐬):             𝑠𝑖 − 𝑠𝑖−1 − 0.1 = 0 

  

ℎ7(𝐺𝑚𝑎𝑥):      𝐺𝑚𝑎𝑥 − 6 = 0 

ℎ8(𝛉, 𝐬):          
𝜕𝜃𝑚𝑎𝑥

𝜕𝑠𝑖𝑚𝑎𝑥

= 0 

ℎ9(𝛉, 𝐬):          
𝜕𝜃0

𝜕𝑠0

, 𝜃0 = 0 

ℎ10(𝐬):             𝑠𝑡𝑜𝑡𝑎𝑙 − ∑ (𝑠𝑖 − 𝑠𝑖−1) = 0

𝑖𝑚𝑎𝑥

𝑖=1

 

ℎ11(𝛉, 𝐬):        
𝜕𝜃𝑖+1

𝜕𝑠𝑖+1

−
𝜕𝜃𝑖

𝜕𝑠𝑖

−
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 (𝑠𝑖+1 − 𝑠𝑖) = 0 

ℎ12(𝛉, 𝐬):        𝜃𝑖+1 − 𝜃𝑖 −
𝜕𝜃𝑖

𝜕𝑠𝑖

(𝑠𝑖+1 − 𝑠𝑖) = 0 

ℎ13(𝛉, 𝐬):           
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 −

𝜕2𝜃𝑖−1

𝜕𝑠𝑖−1
2 − 0.001 = 0 

 

𝑔1(𝛉, 𝐲, 𝐬, u, g, Gmax):   
𝜕𝜃𝑖

𝜕𝑠𝑖

−  
𝐺𝑚𝑎𝑥 − 𝑔𝑐𝑜𝑠(𝜃𝑖)

𝑢2 − 2𝑔𝑦𝑖

≤ 0 

𝑔2(𝛉):             𝜃𝑚𝑎𝑥 − 60 ≤ 0 

𝑔3(𝛉):             −𝜃𝑚𝑎𝑥 − 5 ≤ 0 

𝑔4(𝐬):              𝑠𝑡𝑜𝑡𝑎𝑙 − 300 ≤ 0 

𝑔5(𝐬):             − 𝑠𝑡𝑜𝑡𝑎𝑙 − 50 ≤ 0 

𝑔6(𝛉, 𝐬):          
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 − 0.01 ≤ 0 

𝑔7(𝛉, 𝐬):          −
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 − 0.001 ≤ 0 

𝑔8(𝐟):              − 𝑓𝑖 ≤ 0 

 

Table 6.1.1.1 Subsystem 4 variables and parameters 

𝑓 Maximising airtime experienced by passengers  seconds 

𝒚 Height relative to the starting point  meters 

𝜽 Angle of curvature relative to the x axis degrees 

𝒔 Track length meters 

𝑔 Acceleration due to gravity m/s2 

𝑢 Cart’s velocity entering the subsystem (output of 
subsystem 3) 

m/s 

𝐺𝑚𝑎𝑥 The maximum vertical upwards G-force all 

healthy humans can experience for a non-
negligible amount of time 

G 

 

Table 6.1.1.2 Subsystem-level assumptions to reduce complexity 

Energy losses due to friction and air resistance in the launch track 
section have a negligible impact compared to other design variables 

and were therefore not considered. 

 

Subsystem 3 track ends on ground level and with zero curvature.  

The cart can be modelled as a point mass at the heartline of 
passengers: differences in vertical G-forces experienced by 

passengers at the front and rear of the cart do not have a significant 

impact on their safety and enjoyment. 

 

The system can me modelled as two-dimensional: lateral G-forces 

experienced by passengers during the inversion do not have a 

significant impact on their safety and enjoyment. 

 

 
5.1.2 Subsystem diagram 

 
Figure 5.1.1.1 - Summary of subsystem inputs, outputs, design variables 

and constraints 

5.2 Modelling approach 

5.2.1 Derivations from first principles 

5.2.1.1 Objective function 

The time of flight T for a point mass in projectile motion is a function 

of the vertical component of the object’s velocity. 

𝑇 =
2 sin(𝜃𝑙𝑎𝑢𝑛𝑐ℎ) 𝑣

𝑔
 

Considering the loss in velocity due to increasing potential energy as 

the cart’s elevation increases along the launch track, we have: 

𝑓(𝛉, 𝐲) =
2 sin(𝜃𝑚𝑎𝑥) √𝑢2 − 2𝑔𝑦𝑚𝑎𝑥

𝑔
 

Where u is the initial velocity and 𝜃𝑚𝑎𝑥 and 𝑦𝑚𝑎𝑥 are the launch height 

and launch angle respectively. 

 

5.2.1.2 Launch track geometry computation 

As curvature is a function of displacement along the track and not of 

position in the base reference plane, its mathematical formulation in 

terms of planar x and y coordinates would involve integrals that cannot 

be solved analytically. Euler’s method was used to compute track 

shapes numerically. As the length of a segment of the path approaches 

zero, the change in curvature of the arc with respect to the arc’s length 

approaches the path’s partial derivative at that point.  

 
Figure 5.2.1.1 - Segmenting the path to compute track sections 

With Euler’s method, positions and orientations of points along track 

sections can be computed numerically and were formulated as equality 

constraints for the subsystem: 
ℎ3(𝒚, 𝜽,  𝒔):    𝑦𝑖+1 − 𝑦𝑖  − sin(𝜃𝑖) (𝑠𝑖+1 − 𝑠𝑖) = 0 

ℎ11(𝜽, 𝒔):        
𝜕𝜃𝑖+1

𝜕𝑠𝑖+1

−
𝜕𝜃𝑖

𝜕𝑠𝑖

−
𝜕2𝜃𝑖

𝜕𝑠𝑖
2

(𝑠𝑖+1 − 𝑠𝑖) = 0 

ℎ12(𝜽, 𝒔):        𝜃𝑖+1 − 𝜃𝑖 −
𝜕𝜃𝑖

𝜕𝑠𝑖

(𝑠𝑖+1 − 𝑠𝑖) = 0 

 
The launch point height and the angle of launch of different track 

geometries can be computed with the following summations: 

ℎ1(𝜽,  𝒔):         𝜃𝑚𝑎𝑥 − ∑
𝜕𝜃𝑖

𝜕𝑠𝑖

𝑖𝑚𝑎𝑥

𝑖=1

(𝑠𝑖 − 𝑠𝑖−1) = 0 

ℎ2(𝒚, 𝜽,  𝒔):    𝑦𝑚𝑎𝑥 − ∑ sin(𝜃𝑖) (𝑠𝑖 − 𝑠𝑖−1) = 0

𝑖𝑚𝑎𝑥

𝑖=1

 

 
5.2.1.3 Maximum G-force safety constraint 

The maximum vertical upwards G-force all healthy humans can 

experience is 7G (Powell), but a safer 6G was used for this constraint 

after benchmarking with industry data as the objective of this subsystem 

is not to maximise G-force. The vertical G-force experienced is a 

function of acceleration due to gravity, track curvature and cart velocity, 

the radius of curvature r can be estimated as 
∂s

∂𝜃
 for short segment length 

s, and velocity is a function of initial velocity u and elevation y: 

𝐺 =
𝑣2

𝑟
+ 𝑔𝑐𝑜𝑠(𝜃𝑖); 

1

𝑟𝑖
=

∂𝜃𝑖

∂𝑠𝑖
; 𝑣𝑖 = √𝑢2 − 2𝑔𝑦𝑖 

Maximum track curvature 
𝜕𝜃𝑖

𝜕𝑠𝑖
 therefore has an upper limit: 

𝑔1(𝜽, 𝒚, 𝒔, 𝑢, 𝑔, 𝐺𝑚𝑎𝑥):   
𝜕𝜃𝑖

𝜕𝑠𝑖

−  
𝐺𝑚𝑎𝑥 − 𝑔𝑐𝑜𝑠(𝜃𝑖)

𝑢2 − 2𝑔𝑦𝑖

≤ 0 

 

5.2.1.4 G-force variation constraints 
As sudden changes in G-force can be detrimental to human health, it 

was decided to prevent them in this subsystem. G-force is proportional 

to track curvature, which is defined as the rate of change of the path’s 

orientation with respect to displacement along the path. The derivative 

of the curvature 
𝜕2𝜃𝑖

𝜕𝑠𝑖
2  must therefore be constant in order to guarantee 

gradual increases and decreases in G-forces. 

At the subsystem level, both the input and output curvature must be 

zero in order to, respectively, connect with any flat preceding track 

section and ensure the cart does not have any angular acceleration 

during ‘airtime’. The latter would cause unwanted vertical G-forces to 

be experienced by all passengers.  

ℎ8(𝜽, 𝒔):          
𝜕𝜃𝑚𝑎𝑥

𝜕𝑠𝑖=𝑚𝑎𝑥

= 0    

ℎ9(𝜽, 𝒔):          
𝜕𝜃0

𝜕𝑠0

, 𝜃0 = 0    

It was decided to design a track path symmetrical around its midpoint 

to easily locate the point of maximum G-force (figure 6.2.1.2). The 
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curvature increases linearly until the midpoint and decreases at the same 

rate from the midpoint to the launch point. 

 
Figure 5.2.1.2 - Geometric visualization of the launch track section 

The model for these feasible launch track shapes could not be derived 

from first principles. As explained in 6.3, a set of feasible shapes was 

sampled for a range of ±
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 values.  

 
5.2.1.5 Constraints based on assumptions 

After benchmarking with existing rollercoasters, it was assumed that 

track length stotal is constrained between 50 and 300 meters in order to 

limit the number of feasible geometries sampled. 
𝑔4(𝒔):              𝑠𝑡𝑜𝑡𝑎𝑙 − 300 ≤ 0 

𝑔5(𝒔):             − 𝑠𝑡𝑜𝑡𝑎𝑙 − 50 ≤ 0 

 
The maximum launch angle was bounded at 60o as, in a real-life 

situation, from people sitting far from the cart’s centre of mass would 

experience substantial G-forces in the airtime section due to the track 

‘readjusting’ the cart’s orientation from 𝜃𝑚𝑎𝑥  at launch point to   −𝜃𝑚𝑎𝑥 

at landing point.  
𝑔2(𝜽):             𝜃𝑚𝑎𝑥 − 60 ≤ 0 
  
The minimum value of the launch angle was set as 5o to filter out 

feasible ‘flight paths’ in which the cart orientation of the cart only 

changes marginally. Although those may yield high flight times, the 

real-life experience would lack the thrill of feeling weightless as 

directly facing the sky and then the ground. 
𝑔3(𝜽):             −𝜃𝑚𝑎𝑥 − 5 ≤ 0 
 

5.3 Exploring the problem space 

Monotonicity analysis was not appropriate for the constraints derived 

from first principles as constraint 𝑔1(𝜽, 𝒚, 𝒔, 𝑢, 𝑔, 𝐺𝑚𝑎𝑥) is highly nonlinear. 

The problem space was instead simplified through sampling 

experiments and by incorporating feasibility limitations (constraints) in 

the sampling process.  

 
6.3.1 Computing launch track geometries 

As the model for launch track shape is parametric, the relationship 

between the variables 
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 and si and the objective function could not be 

derived analytically. Instead, a MATLAB function was designed to 

compute a set of feasible geometries for a range of ±
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 and si  values. 

The launch track is discretised as a sum of short track sections, and the 

track’s length is formulated in h10. 

ℎ10(𝒔):             𝑠𝑡𝑜𝑡𝑎𝑙 − ∑ (𝑠𝑖 − 𝑠𝑖−1) = 0

𝑖𝑚𝑎𝑥

𝑖=1

 

The function smoothLaunch takes 
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 and stotal  as arguments, computes 

a path that respects the geometrical constraints outlined in 6.2 and 

returns the path’s launch height ymax, launch angle 𝜃𝑖 , and maximum 

curvature. 

5.3.1.1 Launch track geometry sampling parameter tuning 

Decreasing the track segment length used to compute consecutive track 

points is relatively computationally expensive, increasing the running 

time quadratically due to its use in a nested loop. After performing 

several experiments and comparing their outputs, this parameter was set 

to a value that makes outputs converge to three significant figures and 

makes the design space sampling algorithm executable in under ten 

minutes in MATLAB Online. This parameter is formulated as an 

equality constraint as follows. 
ℎ6(𝒔):             𝑠𝑖 − 𝑠𝑖−1 − 0.1 = 0 

 

5.3.2 Design space sampling & problem simplification 

5.3.2.1 Sampling a set of launch track geometries  

The function smoothLaunchSampling samples a set of launch track 

geometries by inputting a range of curvature derivatives ±
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 and track 

length stotal values into the function smoothLaunch outlined in 6.3.1. 

Experiments were conducted to test and iteratively improve the range 

of curvature derivatives ±
𝜕2𝜃𝑖

𝜕𝑠𝑖
2  used in this model. Though reality-

checking outputs, the following range and step size were selected. 

𝑔6(𝜽, 𝒔):          
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 − 0.01 ≤ 0    

𝑔7(𝜽, 𝒔):          −
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 − 0.001 ≤ 0    

ℎ13(𝜽, 𝒔):           
𝜕2𝜃𝑖

𝜕𝑠𝑖
2 −

𝜕2𝜃𝑖−1

𝜕𝑠𝑖−1
2 − 0.001 = 0 

For each curvature derivative, smoothLaunchSampling computes 

launch track paths within track length constraints. Points in the feasible 

track length range at uniform intervals of 0.1 were selected for the 

sampling as they guaranteed accuracy to at least three significant figures 

and kept the running time of the sampling algorithm below ten minutes 

in MATLAB online. 
ℎ4(𝒔):                𝑠𝑡𝑜𝑡𝑎𝑙𝑖

− 𝑠𝑡𝑜𝑡𝑎𝑙𝑖−1
− 0.1 = 0 

 
6.3.2.2 Incorporating constraints in the sampling process to 

simplify the design space 

Design spaces with design variables launch angle 𝜃𝑚𝑎𝑥 , curvature 

derivative 
𝜕2𝜃𝑖

𝜕𝑠𝑖
2, launch height 𝑦𝑚𝑎𝑥 and track length stotal approximated 

as continuous functions (figure 6.3.2.1) are highly convex as two of the 

variables are angular (the derivative of curvature, and the resulting 

launch angle) and produce noisy overlapping sinusoidal surfaces. 

 
Figure 5.3.2.1 - Early surface plot to investigate the relationship between 

the sampling algorithm inputs and outputs  

Although launch angle 𝜃𝑚𝑎𝑥 could be bounded to respect the problem’s 

constraints, in this model where discretised ranges of track length stotal 

and curvature derivative 
𝜕2𝜃𝑖

𝜕𝑠𝑖
2were used to compute a partially bounded 

launch angle 𝜃𝑚𝑎𝑥 and launch height 𝑦𝑚𝑎𝑥 design space (figure 6.3.2.1), 

the same launch angle can be reached through numerous different 

launch track designs with different combinations of track length and 

curvature derivative. Some of these variable combinations produced 

launch track designs with one or more loops – these are not realistically 

acceptable, and produce numerous non-viable points (and subsequently 

local minima) in this design space.  

Smoothing with a surrogate function would not have been appropriate 

at this stage as viable points in figure 6.3.2.1 are not necessarily 

represented by maxima or minima, and may lie anywhere in the design 

space’s periodic surfaces. This numerical noise is important and must 

be removed to optimise for track shapes that are actually feasible. It was 

therefore decided to apply the G force safety constraint 

𝑔1(𝜽, 𝒚, 𝒔, 𝑢, 𝑔, 𝐺𝑚𝑎𝑥) as part of the sampling algorithm. This filtered out 

all dangerous track geometries that had high maximum curvature 

derivatives, including any track design whose maximum curvature 

derivative is so high that it formed one or more loops. Figure 6.3.2.2 

shows the relationships between launch heights, launch angles and 

maximum curvature of the remaining 535 viable track geometries. 



 13 

 
Figure 5.3.2.2 - Feasible launch track geometries 

5.3.3 Objective function design space 

Using feasible pairs of values of launch angles and their corresponding 

launch point heights, feasible objective function values could be 

computed and plotted against the two design variables, launch angle 

𝜃𝑚𝑎𝑥 and launch height 𝑦𝑚𝑎𝑥 (figure 6.3.3.1). This plot further filters out 

launch track geometries in which the cart wouldn’t have enough initial 

velocity to reach the launch point. This constraint is formulated as: 

𝑔8(𝒇):              − 𝑓𝑖 ≤ 0    
 
𝑓491 to 𝑓535 violate this constraint as launch height is too high for the 

cart to reach the launch point, which makes the objective function 

return a complex imaginary airtime value. These designs were 

therefore ignored in optimisation by setting an upper bound on the 

index of f as 490. 

 
Figure 5.3.3.1 - This subsystem's discrete design space, visualised as a 

maximisation problem 

5.4 Optimisation 

This design space is discrete and unconstrained as all constraints were 

applied during the modelling and sampling process. The relatively low 

amount of feasible designs makes computational efficiency of the 

optimisation algorithm negligible. Optimisation methods with integer 

constraints are appropriate to solve for an index within the set of 

possible solutions. 

5.4.1 Integer Genetic Algorithm optimisation 

A genetic algorithm solver was set up with the objective function as 

the fitness function. The penalty function corresponds to the output of 

the objective function with the current iteration’s indexed launch angle 

and launch height. 

6.4.1.1 Parameter setting 

The number of variables was set as 1; equality and inequality 

constraints were left blank as they were all applied manually in the 

problem simplification process; upper and lower bounds for the indexes 

were set as 1 and 490 respectively to prevent out-of-range indexing in 

the fitness function; and finally the index variable was defined to be 

integer. Other algorithm properties were left as default. 

6.4.1.2 Optimisation results 

After repeated testing, the algorithm identifies the best penalty value 

to the in 1-22 iterations, continues to run until the best penalty value 

hasn’t changed for 50 generations. The process takes 0.10-0.15 seconds. 

Performance is satisfactory for this scope. 

𝑓𝑚𝑖𝑛 = −5.3257 

𝑖𝑚𝑖𝑛 = 245 

 
Figure 5.4.1.1 - A plot of the best and mean penalty values found in each 

generation in an execution of the genetic algorithm 

5.4.2 Pattern Search optimisation 

Patten Search was selected to test an alternative algorithm. The 

algorithm balances global and local search. Pattern Search was chosen 

to test a local search algorithm’s performance in solving for an index 

within a set of solutions. As indexing errors were encountered for very 

small mesh sizes, however, the algorithm did not perform consistently. 

6.4.1.1 Parameter setting 

Numerous starting points were tested and yielded different results. 

Equality and inequality constraints were left blank as they were all 

applied manually in the problem simplification process, and upper and 

lower bounds for the indexes were set as 1 and 490 respectively. Other 

algorithm properties were left as default. The polling method 

MADSPositiveBasis2N converged in fewest iterations and with the 

lowest mesh sizes. 

6.4.1.2 Optimisation results 

As the algorithm stops running after few iterations (8 to 18 depending 

on initial mesh size and polling method) performance was highly 

dependent on the starting point and mesh parameters (size and scaling 

factors). Below are the most frequent results. 

𝑓𝑚𝑖𝑛 = −5.01286, −4.3738   

5.5 Discussion 

The majority of the challenges faced in this subsystem optimisation 

were in designing experiments to create a model of a function that could 

not be solved analytically. Moreover, as the initial models were highly 

non-linear, it was decided apply the constraints as filters throughout the 

modelling process rather that in the optimisation algorithm. The 

drawback of this approach is that post-optimal sensitivity analysis 

cannot be performed mathematically.  

Discrete optimisation algorithms yielded feasible designs in a very 

low computation time. Two algorithms were tested to solve for the 

index which corresponds to the optimal value in the feasible design 

variable values vectors. The Genetic Algorithm was efficient, precise 

and reliable as its global search approach makes it cover the entire 

discrete design space, which in this case was highly nonlinear as shown 

by the lines interpolated between points in figure 6.4.2.1. 

 
Figure 5.4.2.1 - Optimisation algorithm design space 

A local search algorithm (Pattern Search) was much less effective for 

this application: when converging to a local minimum, the algorithm 

would decrease the mesh size until it tried to poll non-integer points, 

hence creating an indexing error. As indices are simply positions in a 

dataset, this highly nonlinear and non-convex design space could have 

been simplified using a sorting algorithm and the optimisation itself 

would have become trivial. The optimal launch track shape (figure 

6.4.2.2) has the following design variable values: 
𝐿𝑎𝑢𝑛𝑐ℎ 𝑎𝑛𝑔𝑙𝑒 = 31.34𝑜 

𝐿𝑎𝑢𝑛𝑐ℎ ℎ𝑒𝑖𝑔ℎ𝑡 = 22.50𝑚 

𝑇𝑟𝑎𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ = 85.40𝑚 
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Figure 5.4.2.2 - Optimal launch track sub-subsystem shape 

Some assumptions were made to simplify the problem due to the 

inherent complexity of this modelling process. Optimising for a real-

life design, however, would require different geometrical constraints set 

by the consideration of energy losses along the track and variability in 

input parameters due to uncertainty in passenger size and weight. 

Moreover, G-forces in three dimensions should be considered to design 

the airtime inversion around passenger’s heartlines. 

6. Conclusion  

This rollercoaster has industry-leading performance in the enjoyment 

factors identified in our research: velocity, G-force intensity and zero-

G airtime. The track subsystems were optimised using three different 

approaches, each with different qualities: subsystem 2 benchmarks 

against industry records, subsystem 3 design according desired G-force 

profiles and subsystem 4 considers curvature changes to prevent 

dangerous sudden G-force changes. To design for a real-world coaster, 

the methods used in our track subsystems can be combined to optimally 

design a wide variety of track sections. 

Further improvements should include considering uncertainty in 

initial conditions (passenger number, weight, seating arrangement) to 

design a robust system, and optimise for reliability to avoid all risks of 

constraint violation. 

7. Appendix A: Nomenclature  

7.1 Cart Subsystem 

𝑤 Width of the wheels (m) 

𝑊𝑝 Load per wheel from the people in the cart (N) 

𝑊𝑐 Load per wheel from the cart itself (N) 

𝜌 Density of the wheel material (N/kg3) 

𝑔 Acceleration due to gravity (m/s2) 

𝑑𝑜 Outer diameter of the wheel (m) 

𝑑𝑖 Inner diameter of the wheel (m) 

𝜎 Poisson ratio of the wheel 

𝜎′ Poisson ratio of the tracks (steel) 

𝐸 Elastic (Young’s) Modulus of the wheel (Pa) 

𝐸′ Elastic Modulus of the tracks (Pa) 

𝐹 Rolling resistance (N) 

𝑊 Total load per wheel 

𝑧 Wheel sinkage 

𝑊𝑤 Load per wheel due to the mass of the wheel (N) 

 

7.2 Drop Subsystem 

𝑑 The length of the drop (m) 

𝑣𝑐 Velocity after initial curve (ms-1) 

𝐺 G Force  

𝑡𝑇 Total time of initial curve and drop (s) 

𝑡𝑐 Time of initial curve (s) 

𝜃 Theta (degrees) 

𝑟 Radius of exit curve 9m) 

𝜌𝑎𝑖𝑟 Density of air (kg/m3) 

𝐴 Frontal area of the roller-coaster (m2) 

𝐶𝐷 Coefficient of drag  

𝐶𝑟𝑟 Coefficient of friction 

g Acceleration due to gravity (m/s2) 

𝑚 Mass of the rollercoaster (kg) 

7.3 Loop Subsystem 

C G-Force equation parameter 

h Height of coaster section (m) 

hmax Maximum height of coaster section  (m) 

R Curvature of coaster section (rad) 

Rmax Maximum curvature of coaster section (rad) 

H Safe G-force Levels over time (m/s^2) 

G G-force of coaster over time (m/s^2) 

 

7.4 Zero-G Roll Subsystem 

𝑦 Height relative to the starting point (m) 

𝜃 Angle of curvature relative to the x axis () 

𝑠 Track length (m) 

𝑢 Cart’s velocity entering the subsystem (m/s) 

𝐺𝑚𝑎𝑥 The maximum vertical upwards G-force all healthy 

humans can experience for a non-negligible amount of 

time (m/s2) 
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